This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Synthesis and Characterization of New Symmetrical Bisphosphonates

Janaína Marques Rodrigues^a; João Batista Neves DaCosta^a

^a Departamento de Química, ICE, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil

Online publication date: 27 October 2010

To cite this Article Rodrigues, Janaína Marques and DaCosta, João Batista Neves(2002) 'Synthesis and Characterization of New Symmetrical Bisphosphonates', Phosphorus, Sulfur, and Silicon and the Related Elements, 177: 1, 137 — 149

To link to this Article: DOI: 10.1080/10426500210231

URL: http://dx.doi.org/10.1080/10426500210231

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SYNTHESIS AND CHARACTERIZATION OF NEW SYMMETRICAL BISPHOSPHONATES

Janaína Marques Rodrigues and João Batista Neves DaCosta* Departamento de Química, ICE, Universidade Federal Rural do Rio de Janeiro, km 47 da Antiga Rio-São Paulo, Seropédica 23851-970, Rio de Janeiro, Brazil

(Received May 11 2001.)

In order to search for new chelating agents, widely employed methodologies in the chemistry of organophosphorus compounds such as the Michaelis-Arbuzov and Michaelis-Becker reactions were used to synthesize new bisphosphonates in high yields. The importance of the synthesis of these compounds resides in their potential capability of complexing different metals, all the more so because bisphosphonates have been widely employed in the diagnosis and therapy of several bone diseases, such as osteoporosis and hypercalcemia, as extracting agents for alkaline, alkaline earth, and transition metals, and also as reaction catalysts. All bisphosphonates synthesized were characterized by IR, ¹H-NMR, ¹³C-NMR, ³¹P-NMR, and mass spectroscopy.

Keywords: Bisphosphonates; diamines; organophosphorus compounds

INTRODUCTION

The chemistry of organophosphorus compounds started to be investigated around the end of the nineteenth century by Michaelis and Arbuzov.^{1–3} One of the most valuable contributions coming from this study is the Michaelis-Arbuzov reaction, which involves formation of a C—P bond. This reaction is widely used for the preparation of phosphonates from trialkyl phosphites and alkyl halides.^{4–6}

The Michaelis-Arbuzov reaction does not work well for the preparation of β -ketophosphonates from α -haloaldehydes and ketones. In this case, the Perkow reaction takes place affording the dialkyl vinyl phosphate, where the P–O bond is formed instead of the P–C bond.

Address correspondence to João Batista Neves DaCosta, Departamento de Química, ICE, Universidad Federal Rural do Rio de Janeiro, km 47 da Antiga Rio-São Paulo, Seropédica 23851-970, Rio de Janeiro, Brazil. E-mail: dacosta@ufrrj.br

$$\begin{array}{c} \text{O} \\ \text{O} \\ \text{R}_{3}\text{O} \\ \text{R}_{2} \\ \text{R}_{2} \\ \text{R}_{2} \\ \text{R}_{2} \\ \text{O} \\ \text{R}_{3}\text{O} \\ \text{O} \\ \text{R}_{3}\text{O} \\ \text{O} \\ \text{R}_{3}\text{O} \\ \text{R}_{3}\text{O} \\ \text{R}_{3}\text{O} \\ \text{R}_{4} \\ \text{R}_{2} \\ \text{R}_{2} \\ \text{R}_{2} \\ \text{R}_{2} \\ \text{O} \\ \text{R}_{3} \\ \text{O} \\ \text{R}_{3}\text{O} \\ \text{O} \\ \text{R}_{3} \\ \text{Et}; \\ \text{S}_{3} \\ \text{S}_{4} \\ \text{N} \\ \text{R}_{1} \\ \text{R}_{1} \\ \text{C}(\text{H}_{2})_{2}, \text{R}_{2} \\ \text{E}_{2} \\ \text{H}, \text{R}_{3} \\ \text{E}_{5}; \\ \text{S}_{5} \\ \text{X} \\ \text{N} \\ \text{N}_{1} \\ \text{R}_{1} \\ \text{C}(\text{H}_{2})_{2}, \text{R}_{2} \\ \text{H}, \text{R}_{3} \\ \text{E}_{5}; \\ \text{S}_{5} \\ \text{X} \\ \text{N}_{7} \\ \text{R}_{1} \\ \text{C}(\text{H}_{2})_{2}, \text{R}_{2} \\ \text{E}_{1} \\ \text{R}_{3} \\ \text{E}_{5}; \\ \text{F}_{7} \\ \text{X} \\ \text{E}_{9} \\ \text{C}_{1} \\ \text{C}_{1} \\ \text{C}_{1} \\ \text{C}_{2} \\ \text{C}_{1} \\ \text{C}_{2} \\ \text{C}_{1} \\ \text{C}_{2} \\ \text{C}_{1} \\ \text{C}_{2} \\ \text{C}_{3} \\ \text{C}_{4} \\ \text{C}_{2} \\ \text{C}_{5} \\ \text{C}_{5} \\ \text{C}_{5} \\ \text{C}_{6} \\ \text{C}_{7} \\ \text{C}_{7$$

FIGURE 1 Novel synthesized bisphosphonates.

However, when α -haloamides are employed, the corresponding phosphonates are obtained in good yields.⁸

Another common method for preparing organophosphorus compounds is the Michaelis-Becker reaction,⁴ which involves the synthesis of dialkylphosphonates through the alkylation of a salt obtained by the reaction between a dialkylphosphite with a strong base. When an α -haloaldehyde or ketone is used, the Michaelis-Becker reaction affords a 1,2-epoxyalkylphosphonate.^{9,10} However, when an α -haloamide is employed, the desired β -ketophosphonate is also obtained.

In this work, seven new bisphosphonates (Figure 1) were prepared through the Michaelis-Arbuzov reaction (1 to 4), the Michaelis-Becker reaction (5), and through transesterification of triethyl phosphonoacetate (6 and 7).

The importance in the synthesis of these compounds resides in their potential capability of complexing different metals. ¹¹

Analogous compounds, as shown in Figure 2, have had their metal complexing ability investigated and have been widely used in the diagnosis and treatment of several diseases (8), $^{12-16}$ as extracting agents for alkaline, alkaline earth and transition metals $(9)^{14,15,17,18}$ and also as reaction catalysts (10). 19

RESULTS

The bisphosphonates where X=N were synthesized in two steps. The first one involved the preparation of N,N'-bis(chloroacetyl)diamines,²⁰ where the yields varied from 50 to 70% according to Scheme 1.

FIGURE 2 Analogous compounds with high complexing ability.

2 Cl
$$R_2$$
 R_2 R_3 R_4 R_5 R_5

SCHEME 1 Synthesis of N,N'-bis(chloroacetyl)diamine.

The second step is the Michaelis-Arbuzov reaction,^{4,21} where 1 mol of each N,N'-bis(chloroacetyl)diamine reacts with 2 mol of triethyl phosphite according to Scheme 2.

$$2 \text{ Et}_3 O \ddot{P} + C I \\ \begin{array}{c} N - R_1 - N \\ R_2 \\ R_2 \end{array} \\ \begin{array}{c} N - R_1 - N \\ R_2 \\ R_2 \end{array} \\ \begin{array}{c} N - R_1 - N \\ R_2 \\ R_2 \end{array} \\ \begin{array}{c} N - R_1 - N \\ R_2 \\ R_2 \end{array} \\ \begin{array}{c} N - R_1 - N \\ R_2 \\ R_2 \end{array} \\ \begin{array}{c} N - R_1 - N \\ N - D \\ N - R_1 - N \\ N - D \\ N - R_1 - N \\ N - D \\ N - R_1 - N \\ N - D \\ N - R_1 - N \\ N - D \\ N - R_1 - N \\ N - D \\ N - R_1 - N \\ N - D \\ N - R_1 - N \\ N - D \\ N - R_1 - N \\ N - D \\ N - R_1 - N \\ N - D \\ N - R_1 - N \\ N - D \\ N - R_1 - N \\ N - D \\ N - R_1 - N \\ N - D \\ N - R_1 - N \\ N - D \\ N - D \\ N - R_1 - N \\ N - D \\ N - R_1 - N \\ N - D \\ N - R_1 - N \\ N - D \\ N - R_1 - N \\ N - D \\ N - R_1 - N \\ N - D \\ N - R_1 - N \\ N - D \\ N - R_1 - N \\ N - D \\ N - R_1 - N \\ N - D \\ N - R_1 - N \\ N - D \\ N - R_1 - N \\ N - D \\ N - R_1 - N \\ N - D \\ N - R_1 - N \\ N - D \\ N - R_1 - N \\ N - D \\ N - R_1 - N \\ N - D \\ N - R_1 - N \\ N - D \\ N - R_1 - N \\ N - D \\ N - R_1 - N \\ N - D \\ N - R_1 - N \\ N - D \\ N - R_1 - N \\ N - D \\ N$$

SCHEME 2 Synthesis of N,N'-bis(diethyl phosphonoacetyl)diamine.

The N,N'-bis(dibutyl phosphonoacetyl)ethylenediamine (5) was synthesized via the Michaelis-Becker reaction^{4,22} in three steps according to Scheme 3.

Ethyleneglycol-bis(diethyl phosphonoacetyl) (**6**) and diethyleneglycol-bis(diethyl phosphonoacetyl) (**7**) were synthesized in two steps. The second step involves a transesterification^{23,24} between the triethyl

SCHEME 3 Synthesis of **5**.

phosphonoacetate and ethyleneglycol or diethyleneglycol as described in Scheme 4.

SCHEME 4 Synthesis of **6** and **7**.

STRUCTURAL DETERMINATION OF THE BISPHOSPHONATES

IR spectra of these compounds show absorption bands at 1240–1276 cm⁻¹, relative to P=O stretching and also at 1023–1030 cm⁻¹ which refer to P=O asymmetric stretching^{25–27} (Table I).

The main indication that the Michaelis-Arbuzov reaction took place can be seen in the 1H NMR spectrum, where the formation of a P–CH₂ bond is represented by a doublet at 2.8–3.0 ppm with J=22 Hz^{28,29} (Table II). The formation of the P–C bond can also be evidenced in the ^{13}C NMR spectrum with a doublet at 34 ppm with a coupling constant in the range of 127–134 ppm 30 (Table III).

Other important signals in the spectra of the amide bisphosphonates are at 16 and 62.0 ppm, which are relative to the ethoxy groups of the ester. The coupling of these carbon atoms with the phosphorus atom ($J=6~\rm Hz$) 31 can also be seen. Compound 4 shows two signals belonging to the piperazine ring, $C\alpha$ at 41.5 ppm and $C\beta$ at 46.3 ppm, 32 which is due to the diamagnetic anisotropy effect. Thus, as is shown in Figure 3, the $C\beta$, which is on the same side as the carbonyl, is deshielded relative to $C\alpha$.

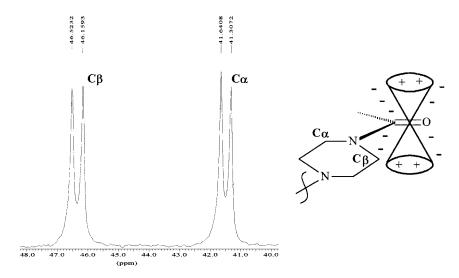
The conformational analysis of this compound, through the use of PM3 Hamiltonian from the MOPAC package, shows that the most stable conformation is a chair in which the substituents of the nitrogen atom are equatorial, as can be seen in Figure 4.

All bisphosphonates synthesized are symmetrical and their ³¹P NMR spectra show only one peak at 20–25 ppm, suggesting that the two phosphorus atoms are in identical environments. The ¹H coupled

TABLE I IR Absorptions Data and Yields of Bisphophonates

	ν(C – O)	983.2	972.5	962.5	965.9	989.5	971.1	975.5
	ν(P —O)	1023.7	1027.3	1030.8	1027.3	1025.9	1027.2	1028.2
${\rm IR}\;({\rm cm}^{-1})$	ν(P= O)	1246.5	1242.0	1240.4	1253.7	1228.1	1270.5	1276.3
	$\nu(C=0)$	1672.8	1660.6	1648.3	1637.1	1664.1	1737.2	1735.3
	$\nu({\rm NH})$	3275.1	3290.6	3346.7	I	3283.1	I	I
	Yield (%)	09	80	94	95	25	80	80
	X	Z	Z	Z	Z	Z	0	0
	$ m R_3$	Et	既	茁	岧	Bu	岧	豉
0=0 0=0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	$ m R_2$	Η	Н	Н	$-CH_2-$	Н	I	I
R30 C C C C C C C C C C C C C C C C C C C	$ m R_1$	$-\mathrm{CH}_2\mathrm{CH}_2-$	$-\mathrm{CH_2CH_2CH_2}-$	$-\mathrm{CH_2CH_2CH_2CH_2}-$	$-\mathrm{CH_2CH_2}-$	$-\mathrm{CH_2CH_2}-$	$-\mathrm{CH_2CH_2}-$	$-\mathrm{CH_2CH_2OCH_2CH_2}-$
	No.	1	2	က	4	5	9	7

TABLE II ¹H NMR Data of Bisphosphonates


	0=0 0=a	0=d	:))	Ca—Cb—Ce	$-C_{\rm d}$ $-O)_2$ $-$	$ \begin{array}{c c} 0 & 0 \\ \parallel & \parallel \\ (C_a - C_b - C_c - C_d - O)_2 - P - C_e - C_f - X - C_g - C_h \sim \end{array} $	$-X-C_g-C_h$	ξ	
	R30/ / X - R1-X - R30 - R2 - R1-X - R30 -		n S S S					$[\mathbf{H}^{\mathrm{I}}]$	1 H NMR $^{\delta({ m ppm}) m J(Hz)}$			
No.	$ m R_1$	$ m R_2$	${ m R}_3$	X	XH	$\mathrm{H_a}$	$\mathrm{H_b}$	$\mathrm{H_c}^{\mathrm{TI}}$	H_{d}	$\mathrm{H_e}$	${ m Hg}$	$\mathrm{H_{h}}$
1	$-\mathrm{CH}_2\mathrm{CH}_2-$	Н	豆	Z	$7.8(s)^a$	I	I	1.35(t)	4.17(q/d)	2.8(d)	3.37(m)	I
2	$-\mathrm{CH_2CH_2CH_2}-$	Н	亞	Z	8.2(s)	I		J = 7.04 1.37(t)	J = 7.16 4.15(q/d)	J = 21.2 3.0(d)	3.38(m)	1.78(m)
								J = 7.16	J = 7.14	J = 21.9		
က	$-\mathrm{CH_2CH_2CH_2CH_2}-$	Н	蓞	Z	7.9(s)	I	I	1.21(t)	4.02(q/d)	2.8(d)	3.04(m)	1.39(m)
								J = 6.91	J = 6.90	J = 21.6		
4	$-CH_2CH_2-$	$-CH_2-$	蓞	Z	I	I	I	1.35(t)	4.18(q/d)	3.1(d)	3.67(m)	I
								J = 7.08	J = 7.08	J = 23.2		
2	$-\mathrm{CH_2CH_2}-$	Н	$\mathbf{B}\mathbf{u}$	z	7.7(s)	0.89(t)	1.36(m)	1.63(m)	4.04(t/d)	2.83(d)	3.32(m)	I
						J = 7.21	J = 6.88	J = 6.64	J = 6.64	J = 21.2		
9	$-\mathrm{CH_2CH_2}-$	I	蓞	0	I	1		1.32(t)	4.19(q/d)	2.97(d)	3.72(s)	I
								J = 6.98	J = 6.98	J = 21.4		
7	$-\mathrm{CH_2CH_2OCH_2CH_2}-$		蓞	0	I			1.35(t)	4.20(q/d)	3.01(d)	4.30(m)	3.72(m)
								J = 7.06	J = 7.08	J = 21.4		

 ${\it a} Multiplicity\ pattern:\ s-singlet;\ d-doublet;\ t-triplet;\ m-multipliet;\ t/d-triplet\ of\ doublet;\ q/d-doublet\ quartet.$

TABLE III ^{13}C and ^{31}P NMR Data of Bisphonates

	0=0 0=0 0=0 0=0 0=0 0=0 0=0	0=0	S. S.				9)) _a —C _b —C	$ \begin{array}{c} 0 \\ \\ \\ \\ C_a - C_b - C_c - C_d - O)_2 - P \end{array} $	0 -P-C _e -	$\begin{matrix} 0 \\ \parallel \\ -C_e - C_f - X - C_g - C_h \sim \end{matrix}$	~,,	
	R ₃ O R ₂ - R ₂	5	ž Ž					8	$^{13}_{\delta (ppm)} J(Hz)$	($NMR-^{31}P$ $\delta(ppm)$
No.	$ m R_{1}$	$ m R_2$	$ m R_3$	X	C_{a}	$C_{\rm p}$	C_c	C_{d}	Ce	C_{f}	Cg	$C_{\rm h}$	P=0
1	$-\mathrm{CH_2CH_2}-$	Н	Ęŧ	z	I	I	16.4(d)	62.8(d)	35.6(d)	165.3(d)	38.7	I	24.3
2	$-\mathrm{CH_2CH_2CH_2}-$	Н	豆	Z	1	1	J = 6.1 16.5(d)	J = 6.1 63.0(d)	J = 128.9 35.5(d)	J = 6.1 $164.6(d)$	39.5	27.8	25.1
ന	—CH°CH°CH°CH°—	Н	펖 Ť	Z		1	J = 6.3 16.34(d)	J = 7.1 62.7(d)	J = 127.5 35.2(d)	J = 5.4 $164.3(d)$	39.1	25.7	24.2
	1						J = 6.07	J = 6.1	J = 128.9	J=4.6			
4	$-\mathrm{CH}_2\mathrm{CH}_2-$	$-CH_2-$	豉	Z	I	1	16.0(d)	62.4(d)	33.0(d)	163.0(d)	$C_{\alpha} = 41.5(d)$ J = 16.7	1	21.1
							J = 6.0	J = 6.0	J = 130.8	$J\!=\!6.1$	$C\beta = 46.3(d)$		
20	$-CH_2CH_2-$	Н	Bu	Z	13.4	18.5	32.2(d)	66.3(d)	35.2(d)	165.1(d)	J = 18.2 38.5	I	24.1
9	$-\mathrm{CH_2CH_2}-$	I	亞	0	-	ļ	J = 6.0 16.2(d)	J = 6.3 62.7(d)	J = 129.3 34.1(d)	J = 4.6 165.7(d)	63.7	I	20.3
7	-CH ₂ CH ₂ OCH ₂ CH ₂ -	I	豉	0	I	I	J = 6.1 16.2(d)	J = 6.2 62.7(d)	J = 133.6 34.1	J = 6.10 165.6(d)	68.7	64.4	20.3
	1						J = 6.1	J = 6.1	J = 133.4	J = 6.10			

 a Multiplicity pattern: d-doublet.

FIGURE 2 Anisotropic effect in compound 4.

phosphorus spectra show a quintuple triplet, which is due to the coupling of P with the methylene next to it $(H_2C-P=0)$ and also with the methylenes of the alkoxide portion $(PO-CH_2CH_n, n=2, 3)$.

The mass spectra of the bisphosphonates did not show the molecular ion, which may be due to the high energy of the electron beam. However, the fragmentation pattern is in accordance with the structures.

EXPERIMENTAL

All solvents used for reactions and in the purification procedures were previously distilled or purified according to usual methods described in the literature. ³³ Melting points were determined with a Buchi 510 and are uncorrected.

FIGURE 3 Tridimensional structures of compound 4.

Infrared spectra were run on a Perkin-Elmer 1600 FT apparatus, using NaCl cells for liquid samples and KBr pellets for solid samples. Gas chromatography was carried out with a Finnigan model 9001 and a Varian 3000.

Mass spectra were run on a HP-5890—70 eV, 1 H (200 MHz) and 13 C NMR (50.3 MHz) spectra were obtained with a Bruker AC-200 and 31 P NMR (121 MHz) spectra were obtained with a Varian VXR 300. TMS was used as internal standard for the 1 H and 13 C spectra and 85% phosphoric acid for the 31 P spectra.

Molecular modelling of compound 4 was carried out using a Pentium 200 MHz computer with 32 MB of RAM. The PM3 Hamiltonian from the MOPAC package was employed and the calculations were done considering the final value of the energy when the gradient reached a value lower than 0.1 kcal (rad or A)⁻¹.

Synthesis of N,N'-bis(diethyl phosphonoacetyl)diamines

General Procedure. The corresponding N,N'-bis(chloroacetyl)diamine and triethyl phosphite in excess were mixed in a 50 mL round flask fitted with a reflux condenser and the mixture was refluxed at 150°C for 5 h. At the end of this period, a white solid precipitated, which was collected and dried under vacuum for 4 h.

Synthesis of N,N'-bis(diethyl phosphonoacetyl)ethylenediamine (1)

N,N'-bis(chloroacetyl)ethylenediamine (11) 0.5 g (2.39 \times 10⁻³ mol) was mixed with 1.6 mL (1.6 g, 9.34 \times 10⁻³ mol) of triethyl phosphite. The reaction yielded 0.6 g (60%) of (1). White solid, m.p. 105–107°C. IR see Table II. ¹H NMR (CDCl₃) see Table III. ¹³C NMR (CDCl₃) see Table III. ³¹P NMR-(H₃PO₄) decoupled see Table III, coupled $J_{P-CH_2} = 21.08 \ Hz$, $J_{P-OCH_2} = 6.90 \ Hz$.

Synthesis of N,N'-bis(diethyl phosphonoacetyl)propylenediamine (2)

N,N'-bis(chloroacetyl)propylenediamine (12) 0.5 g (2.33 \times 10⁻³ mol) and 1.2 mL (1.2 g, 7.0 \times 10⁻³ mol) of triethyl phosphite afforded a viscous brown oil, which was dissolved in dichloromethane and treated with active charcoal. The filtrate was dried with magnesium sulfate and the solvent was evaporated under vacuum, affording 0.8 g of product (80%) yellow oil. IR see Table II. ¹H NMR (CDCl₃) see Table III. ¹³C NMR (CDCl₃) see Table III. ³¹P NMR (H₃PO₄) decoupled see Table III, coupled $J_{P-CH_2} = 21.72$ Hz, $J_{P-OCH_2} = 7.96$ Hz.

Synthesis of N,N'-bis(diethyl phosphonoacetyl)butylenediamine (3)

N,N'-bis(chloroacetyl)butylenediamine (13) 0.9 g (3.85 \times 10^{-3} mol) and 3.0 mL (2.9 g, 1.75 \times 10^{-3}) of triethyl phosphite afforded 1.6 g (94%) of product. White solid, m.p. 80–82°C. IR see Table I. 1H NMR (DMSO) see Table II. ^{13}C NMR (CDCl $_3$) see Table III. ^{31}P NMR (H $_3PO_4$) decoupled see Table III, coupled $J_{P-CH_2}=21.18$ Hz, $J_{P-OCH_2}=7.98$ Hz.

Synthesis of N,N'-bis(diethyl phosphonoacetyl) piperazine (4)

N,N'-bis(chloroacetyl)piperazine (14) 0.5 g (2.26 \times 10⁻³ mol) and 1.5 mL (1.5 g, 8.73 \times 10⁻³ mol) of triethyl phosphite reacted for 5 h at 100°C, affording 0.95 g (95%) of product. White solid, m.p. 49–51°C. IR see Table I ¹H NMR (CDCl₃) see Table II. ¹³C NMR (CDCl₃) see Table III. ³¹P NMR (H₃PO₄) decoupled see Table III, coupled $J_{P-CH_2} = 22.05 \ Hz$, $J_{P-OCH_2} = 7.25 \ Hz$.

Synthesis of Dibutyl Phosphite³⁴

In a two neck 125 mL round flask, equipped with an addition funnel and a reflux condenser fitted with a device which prevents contact with humidity, were added 100 mL (81 g, 1.09 mol) of butyl alcohol. Freshly distilled phosphorus trichloride (32 mL, 3.64×10^{-3} mol) was added dropwise with stirring at 0°C. After all the phosphorus trichloride had been added, the mixture was heated at 50°C for approximately 1 h. Distillation under reduced pressure (3 mm Hg) afforded 37.0 mL (52%) of product.

Synthesis of N,N'-bis(dibutyl phosphonoacetyl)ethylenediamine (5)

In a three neck 125 mL round flask equipped with a reflux condenser and a septum, were added 30.0 mL of dry toluene, 0.4 g (1.87×10^{-3} mol) of metallic sodium and 3.7 mL (3.6 g, 1.87×10^{-3} mol) of dibutyl phosphite. The mixture was stirred and kept at room temperature until all the metal had reacted, which took around 3 h.

N,N'-bis(chloroacetyl)ethylenediamine $(2.0 \text{ g}, 9.39 \times 10^{-3} \text{ mol})$ was rapidly added followed by reflux at 110°C for 4 h. The reaction mixture was filtered and the filtrate was evaporated under reduced pressure at 120°C for 4 h affording 1.2 g of a yellowish solid, which was washed with ethyl ether to give (5) with a 25% yield. White solid, m.p. 63–65°C. IR see Table I ^{1}H NMR (CDCl₃) see Table II. ^{13}C NMR (CDCl₃) see

Table III. ^{31}P NMR (H_3PO_4) decoupled see Table III, coupled $J_{\rm P-CH_2}=21.17$ Hz, $J_{\rm P-OCH_2}=7.22$ Hz.

Synthesis of Triethyl Phosphonoacetate

To 4.0 mL (5.0 g, 3.61 \times 10^{-2} mol) of ethyl α -bromoacetate, in a 50 mL round flask equipped with a reflux condenser, were added 7.4 mL (7.2 g, 4.32 \times 10^{-2} mol) of triethyl phosphite. This mixture was stirred at $100^{\circ} C$ for 6 h. The reaction mixture was then submitted to reduced pressure at $80^{\circ} C$ for 5 h. This treatment afforded 7.0 g (87%) of product, which did not need any further purification. Colorless liquid. IR see Table I $^{1} H$ NMR (CDCl3) see Table II. $^{13} C$ NMR (CDCl3) see Table III.

Synthesis of Ethyleneglycol-bis(diethyl phosphonoacetyl) (6)

To 1.0 mL (1.1 g, 4.78×10^{-3} mol) of triethyl phosphonoacetate in a 50 mL round flask, connected to a vacuum line, were added 0.1 mL (0.2 g, 2.39×10^{-3} mol) of ethylene glycol. The reaction mixture was stirred at 160° C for 7 h under vacuum. This reaction afforded 0.8 g (80%) of (6). Colorless oil. IR see Table I 1 H NMR (CDCl₃) see Table II. 13 C NMR (CDCl₃) see Table III. 31 P NMR (H₃PO₄) decoupled see Table III coupled $J_{P-CH_2}=21.46$ Hz, $J_{P-OCH_2}=7.98$ Hz.

Synthesis of Diethyleneglycol-bis(diethyl phosphonoacetyl) (7)

To 0.9 mL (1.0 g, 4.29 \times 10⁻³ mol) of triethyl phosphonoacetate in a 50 mL round flask, connected to a vacuum line, were added 0.2 mL (0.2 g, 2.15 \times 10⁻³ mol) of diethyleneglycol. This mixture was heated at 160°C for 7 h, with stirring under vacuum. In this way, 0.8 g (80%) of (7) were obtained. Yellowish oil. IR see Table I. ¹H NMR (CDCl₃) see Table II. ¹³C NMR (CDCl₃) see Table III. ³¹P NMR (H₃PO₄) decoupled see Table III, coupled J_{P-CH₂} = 21.71 Hz, J_{P-OCH₂} = 8.58 Hz.

CONCLUSION

The methodology employing Michaelis-Arbuzov or Michaelis-Becker reactions for the synthesis of bisphosphonates is extremely satisfactory since these compounds are obtained in good yield and in a simple way.

ACKNOWLEDGMENTS

We thank the Brazilian agencies CAPES and CNP_q for financial support and Prof. Whei Oh Lin for some of the chemicals employed in this work.

REFERENCES

- [1] A. E. Arbuzov, Phys. Chem. Soc., 38, 687 (1906).
- [2] A. E. Michaelis and R. Kaehne, Ber. Stsch. Chem. Ges., 31, 1048 (1898).
- [3] R. G. Harvey and E. R. Desombre, Topics in Phosphorus Chemistry (Interscience, 1964), vol. 1, p. 57.
- [4] J. I. G. Cadogan, Organophosphorus Reagents in Organic Synthesis (Academic Press, London, 1979), 1st ed, pp. 4-6.
- [5] A. H. Ford-Moore and B. J. Perry, Org. Syn. Coll., 4, 955 (1963).
- [6] V. Mark, Mech. Mol. Migr., 2, 319 (1969).
- [7] W. Perkow, K. Ullerich, and F. Meyer, Naturwiss., 39 (15), 353 (1952).
- [8] B. J. Walker, Organophosphorus Chemistry, Specialist Periodical Reports (The Chemical Society, London), vol. 1–10, ch. 5.
- [9] G. W. Kenner, Proc. Chem. Soc., 136 (1957).
- [10] G. Sturtz, Bull. Soc. Chim. France, 9, 2333–2340 (1964).
- [11] T. H. Sidall, J. Inorg. Nucl. Chem., 25, 883-892 (1963).
- [12] H. Fleisch, Osteoporosis International, Suppl. 3(3), S3–S5 (1993).
- [13] R. G. G. Russell and M. J. Rogers, British Journal of Rheumatology, Suppl. 1(36), 10–14 (1997).
- [14] M. Mathew, B. O. Fowler, G. Golomb, I. S. Alferiev, and N. Eidelman, *Inorg. Chem.*, 37, 6485–6494 (1998).
- [15] J. P. Räsänen, E. Pohjala, H. Nikander, and T. A. Pakkanen, J. Phys. Chem. A, 101, 5196–5204 (1997).
- [16] J. Ochocki, A. Erxleben, and B. Lippert, J. Heterocycl. Chem., 34, 1179–1184 (1997).
- [17] S. Kannan, V. Venugopal, *Polyhedron*, **14** (17–18), 2349–2354 (1995).
- [18] M. P. Belciug, A. M. Modro, T. A. Modro, and P. L. Wessels, J. Phys. Org. Chem., 8, 605–609 (1995).
- [19] I. L. Gall, P. Laurent, E. Soulier, J. Y. Salaün, and Abbayes., J. Organomet. Chem., 567, 13–20 (1998).
- [20] J. B. N. DaCosta, Master in Science Thesis, Instituto Militar de Engenharia (1987).
- [21] W. O. Lin, M. C. Souza, and J. B. N. DaCosta, Quimica Nova, 18, 431–434 (1995).
- [22] G. Sturtz, Mémoires Présentés a la Société Chimique (Paris, 1964), 5th ed., 384, 2333–2340.
- [23] G. H. Posner and M. Oda, Tetrahedron Lett., 22, 5003–5006 (1981).
- [24] S. S. Rana, J. J. Barlow, and K. L. Matta, Tetrahedron Lett., 22, 5007-5010 (1981).
- [25] L. J. Bellamy, The Infrared Spectra of Complex Molecules (Wiley, New York, 1958), 2nd ed.
- [26] K. Nakanishi, Infrared Absorption Spectroscopy (Holden-Day, San Francisco, 1969), pp. 231.
- [27] C. D. Cross, Introduction to Practical Infrared Spectroscopy (Butterworth, London, 1964), 2nd ed.
- [28] H. David, G. Martin, G. Mavel, and G. Sturtz, Mémoires Présentés A La Société Chimique (Sorbonne, Paris, 1962), 272.

- [29] L. C. Thomas, The Identification of Functional Groups in Organophosphorus Compounds (Academic Press, London, 1974), 1st ed.
- [30] B. M. Rapko, E. N. Duesler, D. Frutos, and R. T. Paine, *Polyhedron*, 14 (17–18), 2361–2369 (1995).
- [31] H. O. Kalinowski, S. Berger, and S. Braun, Carbon-13 NMR Spectroscopy (Wiley, New York, 1988), 1st ed., p. 234.
- [32] D. H. Williams and I. Fleming, Spectroscopic Methods in Organic Chemistry (McGraw-Hill Book, London, 1995), 5th ed.
- [33] D. D. Perrin, W. L. F. Armarego, and D. R. Perrin, Purification of Laboratory Chemicals (Pergamon Press, 1966).
- [34] H. Mc Combie, B. C. Saunders, and G. J. Stacey, J. Am. Chem. Soc., 93, 380–382 (1945).